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Abstract—A linear analysis of the stability of the flow in a laminar boundary layer under conditions of
intensive interphase mass transfer between two liquids, when high mass fluxes through the phase boundary
induce secondary flows, is suggested. The first liquid is in motion over the second one (in rest). Hyd-
rodynamic stability in the two phases is considered. The critical Reynolds numbers in the first place are
obtained at different intensities of non-linear mass transfer in the laminar boundary layer. The influence
of the direction of the intensive interphase mass transfer on the hydrodynamic stability is analogous to the
cases where phase boundary is motionless, but depends on the distribution of the diffusive resistance in the
two phases. The motion of the interface is considerably more intensive than the one in the gas-liquid
system, which leads to an increase in the stability of the flow to a large degree. The flow is stable at a large
Reynolds number in the second phase. Copyright © 1996 Elsevier Science Ltd.

1. INTRODUCTION

The first two reports [1, 2] show that the motion of the
interface [2] influences sufficiently the hydrodynamic
stability of a flow in the gas boundary layer on the
boundary with the flat liquid surface. In addition, this
motion and the effect of the intensive interphase mass
transfer [1] are superposed. This effect must be ampli-
fied considerably under conditions of intensive inter-
phase mass transfer between two liquids, where the
hydrodynamic interaction between them is stronger
and surface velocity is higher.

Non-linear effects in the case of an intensive inter-
phase mass transfer between two liquids can manifest
themselves with the same intensity in both phases. In
a number of extraction processes, where the motion
of one of the phases (dispersion environment) induces
motion in another (dispersion phase), these effects
are of great interest. Further, we can consider the
hydrodynamic stability under conditions of an inten-
sive interphase mass transfer between two liquid
phases, where the velocity in the volume of one of
them is zero (Fig. 1).

2. VELOCITY PROFILES IN THE BOUNDARY
LAYER

The mathematical model of non-linear mass trans-
fer in liquid-liquid systems, where the first liquid is in
motion over the second one (which is in rest) can be
obtained from the model ‘liquid—gas’ [2]. It is necess-
ary to have the diffusion equation for the second
phase, and the following must be added into the
bhoundary conditions :
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Fig. 1. Velocity profiles in liquid flows in the boundary layer
(liquid-liquid system).
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where m is the distribution coefficient and the indexes
1, 2 denote liquid 1 and liquid 2, respectively.

The problem formulated above was solved numeri-
cally [3, 4] and the boundary values for the velocity
and its derivatives are obtained. This gives us an
opportunity in the analysis presented here to generate
the velocity profiles by the following hydrodynamic
problem:
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NOMENCLATURE
A dimensionless wave number, initial Greek symbols
value of the Blasius function £ parameter
B initial value of first derivative of the 0 parameter
Blasius function ¥ kinematic viscosity
¢ concentration ¢ variable
C dimensionless phase velocity, initial p density.
value of second derivative of the Blasius
function
D diffuston coefficient
! Blasius function
k parameter Subscripts and superscripts
m diffusion coefficient * conditions on interface
M molecular mass 0 conditions in volume
Re Reynolds number 1 liquid 1 phase
u velocity of basic stationary flow in x 2 liquid 2 phase
direction cr critical number
velocity of basic stationary flow in y i imaginary part of complex number
direction max maximum
X coordinate min  minimum
y coordinate. r real part of complex number.
a2 o EY Table 1. The computed values of 4, B, C; and k in cases
u/gﬁ +v /.% =y e R /B =0; where the resistanci to diffusion is lin/liteii b}i the mass trans-
ox oy oy’ dx 0Oy fer in the continuous phase (m/b = 0,6, = 6,8, = 0). The
second part of table—these values in cases of commensurate
v =0, u =uy, u=0; diffusional resistances (b/m = 1,8, = 8, = 0)
y=0.u =, 0=y, o 4, B ¢ k
YW_R. j=1,2 (2) ¢=10  —05 066525 0439 026565 0.673
dy o o mib=0 —03  0.032988 0420 0.26565 0.747
—-0.1 0.0094 0.405 0.26565 0.805
where u,, v, and R, (j = 1,2) are determined in ref. 0 0 0.4 0.26565  0.823
[4]. o ’ 0.1 —0.008261 0.394 0.26565 0.846
. N . 0.3 —0.022194 0.384 0.26565  0.883
Introducing similarity variables 0.5 0033445 03755 026565 0915
o ur\* bim=1 —05 002117 04132 026565 0.773
up=uofi(C), v, = ( e ) &fi=1)- —03 0012867 04075 0.26565 0.8
—-0.1 0.004316 0.402  0.26565 0.82
o\ D1 0004316 03967 026 oaae
z —1 0 : . ~0. . . .
= ‘(l?) =12 3 0.3 0012867 039 026565 0.862
0.5 —0.02117 0.385 026565 0.88
leads to problem which allows us to determine the
velocity profiles
A"+ =0, 0 YT J=1L2 (5)

110) =4, [i{0) =B, [i0)=C,.
J=12 (fi(0) =1, fi3(0) =0) 4

where A;, B; and C, are results of the numerical solu-
tion [4], and they are displayed in Table 1.

The velocity profiles f/(£) (/= 1,2) depend sub-
stantially on the effect of the non-linear mass transfer
(4, j = 1,2), which is characterized by the parameters
0,(j=1.2[3.4]

This effect is superposed with the effect of the hydro-
dynamic interaction between the phases (C,j = 1,2).
Hence, the interface velocity (b, j = 1,2) takes into
account both of the above mentioned effects.

3. RESULTS AND DISCUSSION

The linear analysis of the hydrodynamic stability in
the liquid-liquid systems is made analogously to the
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Table 2. Values of the critical Reynolds numbers Re. wave
velocities C,, wave numbers 4 and C, i, 4 Obtained (in
casesm/b=0,0,=0,0,=0and b/m=1,0,=0,=0)

€ 6 Recr A Cr Amin Crmin
e=10 —0.5 3145 0315 0.6235 0358 0.6246
mb=0 —03 2663 0320 0.6155 0.364 0.6163
—0.1 2343 0325 0.6092 0372 0.6101

0 2243 0.330 0.6081 0.372 0.6085

0.1 2145 0320 0.6042 0.374 0.6053

03 1983 0320 0.5997 0375 0.6009

0.5 1859 0.330 0.5969 0377 0.5974

bm=1 —0.5 2503 0325 0.6130 0.367 0.6135
—-03 2398 0.325 0.6099 0370 0.6111

—0.1 2288 0.325 0.6079 0.371 0.6086

0 2243 0330 0.6081 0.372 0.6085

0.1 2170 0330 0.6064 0.374 0.6066

03 2079 0320 0.6020 0375 0.6036

0.5 1999 0325 0.6008 0.375 0.6015

one in the case of gas—liquid systems [2]. The velocity
profiles (4) are introduced into the Orr—Sommerfeld
equation. The results obtained show that the stability
of the profiles depends considerably on the non-linear
effects of the mass transfer §; (j = 1,2), as well as on
the interface velocity B; (j = 1,2).

In the cases, where the non-linear effects are not
presented (60 = 6, = 6, = 0) the increase of the inter-
face velocity (B; (j=1,2)) leads to significant
stabilizing of the flow (Figs. 2,4).

The effect of the non-linear mass transfer in the
liquid 1 (Table 2, m/b = 0) and the effects of the
increase of interface velocity are superposed and their
total influence on the stability of the flow in phase 1
is shown in Figs. 2-4.
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Under the conditions of commensurabie diffusive
resistances in the two liquids (Table 2, m/b = 1) the
non-linear effects decrease (Figs. 5, 6). The influence
of the non-linear effects (6) on the stability of the flow
decreases.

Linear analysis of the hydrodynamic stability of the
phase 2 shows analogous results to those in ref. [2].
The flow is stable with large Reynolds numbers
(Re =~ 25000), which can be explained with the profile
shape (approximately the same as the Couette one,
Fig. 7).

The investigations of the hydrodynamic stability in
the systems with intensive interphase mass transfer
show that the stability increases with the rise of the
interface velocity and the rise of concentration gradi-
ents in the cases of interphase mass transfer directed
from the volume to the phase boundary. The decrease
of the interface velocity and the change of the direction
of interphase mass transfer destabilize the flow in the
boundary layer.

The experimental researches [5-7] of the mass trans-
fer in systems with intensive interphase mass transfer
between two liquids show in a number of cases a
higher mass transfer rate, compared with the cases
which are predicted by linear theory of mass transfer.
So far it was explained by the Marangoni effect, i.e.
the creation of interfacial tension gradients as a result
of temperature or concentration heterogeneity on the
phase boundary. The interfacial tension gradient
induces secondary flows directed tangentially to the
phase boundary. They change the velocity profiles in
the boundary layer. Thus, the mass transfer rate is
directly affected. In the case of hydrodynamic
instability of the new profiles the flow spontaneously
evolves from laminar into turbulent and the mass
transfer rate drastically increases.
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Fig. 2. The neutral curves for the wave number A4 as a function of the Reynolds number Re in liquid 1
(m/b=0,0,=80,0,=0).
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Fig. 3. The neutral curves for the phase velocity C, as a function of the Reynolds number Re in liquid 1
(m/b=0,0,=0,0,=0).
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Fig. 4. The neutral curves for the wave number A as a function of the Reynolds number Re in liquid 1,
where interface velocity increases (m/b = 0,6, = 6, 0, = 0).

The results obtained in this work show that under mally to the phase boundary. These secondary flows
the conditions of intensive interphase mass transfer, change the velocity profiles, consequentially they
high mass fluxes induce secondary flows directed nor-  change the kinetics of the mass transfer (non-linear
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Fig. 5. The neutral curves for the wave number A as a function of the Reynolds number Re in liquid 1,
(bim=1,0,=0,=0).
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Fig. 6. The neutral curves for the phase velocity C, as a function of the Reynolds number Re in liquid 1
(bim=1,0,=6,=10).

mass transfer) and the hydrodynamic stability of the kinetics of mass transfer and the hydrodynamic
flow. This is a radically different mechanism for the stability in liquid-liquid systems.
influence of intensive interphase mass transfer on the The theoretical results obtained allow comparative
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Fig. 7. Velocity profile of the flow of liquid 2 (6, = 0,¢&, = 20).

analysis of the influence of the Marangoni effect and
the effect of non-linear mass transfer on the mass
transfer rate, and the hydrodynamic stability of sys-
tems with intensive interphase mass transfer.
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